Grayanotoxin, veratrine, and tetrodotoxin-sensitive sodium pathways in the Schwann cell membrane of squid nerve fibers
نویسندگان
چکیده
The actions of grayanotoxin I, veratrine, and tetrodotoxin on the membrane potential of the Schwann cell were studied in the giant nerve fiber of the squid Sepioteuthis sepioidea. Schwann cells of intact nerve fibers and Schwann cells attached to axons cut lengthwise over several millimeters were utilized. The axon membrane potential in the intact nerve fibers was also monitored. The effects of grayanotoxin I and veratrine on the membrane potential of the Schwann cell were found to be similar to those they produce on the resting membrane potential of the giant axon. Thus, grayanotoxin I (1-30 muM) and veratrine (5-50 mug-jl-1), externally applied to the intact nerve fiber or to axon-free nerve fiber sheaths, produce a Schwann cell depolarization which can be reversed by decreasing the external sodium concentration or by external application of tetrodotoxin. The magnitude of these membrane potential changes is related to the concentrations of the drugs in the external medium. These results indicate the existence of sodium pathways in the electrically unexcitable Schwann cell membrane of S. sepioidea, which can be opened up by grayanotoxin I and veratrine, and afterwards are blocked by tetrodotoxin. The sodium pathways of the Schwann cell membrane appear to be different from those of the axolemma which show a voltage-dependent conductance.
منابع مشابه
Pharmacological Modifications of the Sodium Channels of Frog Nerve
Voltage clamp measurements on myelinated nerve fibers show that tetrodotoxin, saxitoxin, and DDT specifically affect the sodium channels of the membrane. Tetrodotoxin and saxitoxin render the sodium channels impermeable to Na ions and to Li ions and probably prevent the opening of individual sodium channels when one toxin molecule binds to a channel. The apparent dissociation constant of the in...
متن کاملGrayanotoxin opens Na channels from inside the squid axonal membrane.
External application of alpha-dihydro-grayanotoxin II (alpha-H2-GTX II) to squid giant axon under nonperfused condition caused substantial membrane depolarization. Intracellular perfusion of the fibers retarded this depolarization appreciably. Tritium-labeled alpha-dihydro-grayanotoxin II ([3H]alpha-H2-GTX II) in the external medium can permeate through the cell membrane, but permeation of alph...
متن کاملAutoradiographic localization of acetylcholine receptors in the Schwann cell membrane of the squid nerve fiber
Intact and slit nerve fibers of the squid Sepioteuthis sepioidea were incubated in a 50-nM solution of [125I] alpha-bungarotoxin in artificial seawater, in the absence and in the presence of D-tubocurarine (10(-4) M). The distribution of the radioactive label was then determined by electron microscope autoradiography. It was found that, in the fibers exposed solely to the radioactive toxin, the...
متن کاملSodium flux through the sodium channels of axon membrane fragments isolated from lobster nerves
The efflux of 22Na from vesicles formed by axolemma fragments isolated from lobster nerves was studied in the presence and in the absence of drugs having well-known action on the sodium channels. The vesicles were equilibrated 12-14 h at 4 degrees C with 22Na in lobster solution containing 1 mM ouabain. Afterwards the suspension was divided: one portion was used as control and the others were t...
متن کاملFine Structural Alterations Associated with Venom Action on Squid Giant Nerve Fibers
(1) Block of conduction and marked increase in permeability of the squid giant axon, when surrounded by adhering small nerve fibers, is caused by the venoms of cottonmouth, ringhals, and cobra snakes and by phospholipase A (PhA). This phenomenon is associated with a marked breakdown of the substructure of the Schwann sheath into masses of cytoplasmic globules. Low concentrations of these agents...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 67 شماره
صفحات -
تاریخ انتشار 1976